Locally Training the Log-Linear Model for SMT

نویسندگان

  • Lemao Liu
  • Hailong Cao
  • Taro Watanabe
  • Tiejun Zhao
  • Mo Yu
  • Conghui Zhu
چکیده

In statistical machine translation, minimum error rate training (MERT) is a standard method for tuning a single weight with regard to a given development data. However, due to the diversity and uneven distribution of source sentences, there are two problems suffered by this method. First, its performance is highly dependent on the choice of a development set, which may lead to an unstable performance for testing. Second, translations become inconsistent at the sentence level since tuning is performed globally on a document level. In this paper, we propose a novel local training method to address these two problems. Unlike a global training method, such as MERT, in which a single weight is learned and used for all the input sentences, we perform training and testing in one step by learning a sentencewise weight for each input sentence. We propose efficient incremental training methods to put the local training into practice. In NIST Chinese-to-English translation tasks, our local training method significantly outperforms MERT with the maximal improvements up to 2.0 BLEU points, meanwhile its efficiency is comparable to that of the global method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fill-up versus interpolation methods for phrase-based SMT adaptation

This paper compares techniques to combine diverse parallel corpora for domain-specific phrase-based SMT system training. We address a common scenario where little in-domain data is available for the task, but where large background models exist for the same language pair. In particular, we focus on phrase table fill-up: a method that effectively exploits background knowledge to improve model co...

متن کامل

Integrating Source-Language Context into Log-Linear Models of Statistical Machine Translation

The translation features typically used in state-of-the-art statistical machine translation (SMT) model dependencies between the source and target phrases, but not among the phrases in the source language themselves. A swathe of research has demonstrated that integrating source context modelling directly into log-linear phrasebased SMT (PB-SMT) and hierarchical PB-SMT (HPB-SMT), and can positiv...

متن کامل

Domain Adaptation in Statistical Machine Translation of User-Forum Data using Component-Level Mixture Modelling

This paper reports experiments on adapting components of a Statistical Machine Translation (SMT) system for the task of translating online user-generated forum data from Symantec. Such data is monolingual, and differs from available bitext MT training resources in a number of important respects. For this reason, adaptation techniques are important to achieve optimal results. We investigate the ...

متن کامل

A Localized Prediction Model for Statistical Machine Translation

In this paper, we present a novel training method for a localized phrase-based prediction model for statistical machine translation (SMT). The model predicts blocks with orientation to handle local phrase re-ordering. We use a maximum likelihood criterion to train a log-linear block bigram model which uses realvalued features (e.g. a language model score) as well as binary features based on the...

متن کامل

Investigation on the effects of ASR tuning on speech translation performance

In this paper we describe some of our recent investigations into ASR and SMT coupling issues from an ASR perspective. Our study was motivated by several areas: Firstly, to understand how standard ASR tuning procedures effect the SMT performance and whether it is safe to perform this tuning in isolation. Secondly, to investigate how vocabulary and segmentation mismatches between the ASR and SMT ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012